大唐2-【金澳国际】登录招商QQ:79634可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  做药品,食品等检验员,测验,工资刚开始不高,要看自己的技术啦,需要经验和实践

  生物医学工程(Biomedical Engineering,简称BME)是结合物理、化学、数学和计算机与工程学原理,从事生物学、医学、行为学或卫生学的研究;提出基本概念,产生从分子水平到器官水平的知识,开发创新的生物学制品、材料、加工方法、植入物、器械和信息学方法,用与疾病预防、诊断和治疗,病人康复,改善卫生状况等目的。

  生物医学工程(Biomedical-Engineering)是一门新兴的边缘学科,它综合工程学、物理学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。它有一个分支是生物信息、化学生物学等方面主要攻读生物、计算机信息技术和仪器分析化学等,微流控芯片技术的发展,为医疗诊断和药物筛选,以及个性化、转化医学提供了生物医学工程新的技术前景,化学生物学、计算生物学和微流控技术生物芯片是系统生物技术,从而与系统生物工程将走向统一的未来。

  生物医学工程兴起于20世纪50年代,它与医学工程和生物技术有着十分密切的关系,而且发展非常迅速,成为世界各国竞争的主要领域之一。

  生物医学工程学与其他学科一样,其发展也是由科技、社会、经济诸因素所决定的。这个名词最早出现在美国。1958年在美国成立了国际医学电子学联合会,1965年该组织改称国际医学和生物工程联合会,后来成为国际生物医学工程学会。

  生物医学工程学除了具有很好的社会效益外,还有很好的经济效益,前景非常广阔,是新时期各国争相发展的高技术之一。以1984年为例,美国生物医学工程和系统的市场规模约为110亿美元。美国科学院估计,到2000年其产值预计可达400~1000亿美元。

  生物医学工程学是在电子学、微电子学、现代计算机技术,化学、高分子化学、力学、近代物理学、光学、射线技术、精密机械和近代高技术发展的基础上,在与医学结合的条件下发展起来的。它的发展过程与世界高技术的发展密切相关,同时它采用了几乎所有的高技术成果,如航天技术,微电子技术等。

  1. 生物材料是制作各种人工器官的物质基础,它必须满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等;轻合金材料的应用较为广泛。

  生物医用复合材料(biomedical composite materials)是由两种或两种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、替换和人工器官的制造[1]。长期临床应用发现,传统医用金属材料和高分子材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料研究和发展中最为活跃的领域。

  生物医用复合材料根据应用需求进行设计,由基体材料与增强材料或功能材料组成,复合材料的性质将取决于组分材料的性质、含量和它们之间的界面。常用的基体材料有医用高分子、医用碳素材料、生物玻璃、玻璃陶瓷、磷酸钙基或其他生物陶瓷、医用不锈钢、钴基合金等医用金属材料;增强体材料有碳纤维、不锈钢和钛基合金纤维、生物玻璃陶瓷纤维、陶瓷纤维等纤维增强体,另外还有氧化锆、磷酸钙基生物陶瓷、生物玻璃陶瓷等颗粒增强体。

  植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料必须满足下面几项要求:⑴具有良好的生物相容性和物理相容性,保证材料复合后不出现有损生物学性能的现象;⑵具有良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组成不引起生物体的生物反应;⑶具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;⑷具有良好的灭菌性能,保证生物材料在临床上的顺利应用。此外,生物材料要有良好的成型、加工性能,不因成型加工困难而使其应用受到限制。

  陶瓷基复合材料是以陶瓷、玻璃或玻璃陶瓷基体,通过不同方式引入颗粒、晶片、晶须或纤维等形状的增强体材料而获得的一类复合材料。生物陶瓷基复合材料虽没有多少品种达到临床应用阶段,但它已成为生物陶瓷研究中最为活跃的领域,其研究主要集中于生物材料的活性和骨结合性能研究以及材料增强研究等。

  Al2O3、ZrO3等生物惰性材料自70年代初就开始了临床应用研究,但它与生物硬组织的结合为一种机械的锁合。以高强度氧化物陶瓷为基材,掺入少量生物活性材料,可使材料在保持氧化物陶瓷优良力学性能的基础上赋予其一定的生物活性和骨结合能力。将具有不同膨胀系数的生物玻璃用高温熔烧或等离子喷涂的方法,在致密Al2O3陶瓷髋关节植入物表面进行涂层,试样经高温处理,大量的Al2O3进入玻璃层中,有效地增强了生物玻璃与Al2O3陶瓷的界面结合,复合材料在缓冲溶液中反应数十分钟即可有羟基磷灰石的形成。为满足外科手术对生物学性能和力学性能的要求,人们又开始了生物活性陶瓷以及生物活性陶瓷与生物玻璃的复合研究,以使材料在气孔率、比表面积、生物活性和机械强度等方面的综合性能得以改善。这些年来,对羟基磷灰石(HA)和磷酸三钙(TCP)复合材料的研究也日益增多。30% HA与70%TCP在1150℃烧结,其平均抗弯强度达155MPa,优于纯HA和TCP陶瓷,研究发现HA-TCP致密复合材料的断裂主要为穿晶断裂,其沿晶断裂的程度也大于纯单相陶瓷材料。HA-TCP多孔复合材料植入动物体内,其性能起初类似于β-TCP,而后具有HA的特性,通过调整HA与TCP的比例,达到满足不同临床需求的目的。45SF1/4玻璃粉末与HA制备而成的复合材料,植入兔骨中8周后取出,骨质与复合材料之间的剪切破坏强度达27MPa,比纯HA陶瓷有明显的提高。

  生物医用陶瓷材料由于其结构本身的特点,其力学可靠性(尤其在湿生理环境中)较差,生物陶瓷的活性研究及其与骨组织的结合性能研究,并未能解决材料固有的脆性特征。因此生物陶瓷的增强研究成为另一个研究重点,其增强方式主要有颗粒增强、晶须或纤维增强以及相变增韧和层状复合增强等[3,5~7]。当HA粉末中添加10%~50%的ZrO2粉末时,材料经1350~1400℃热压烧结,其强度和韧性随烧结温度的提高而增加,添加50%TZ-2Y的复合材料,抗折强度达400MPa、断裂韧性为2.8~3.0MPam1/2。ZrO2增韧β-TCP复合材料,其弯曲强度和断裂韧性也随ZrO2含量的增加而得到增强。纳米SiC增强HA复合材料比纯HA陶瓷的抗弯强度提高1.6倍、断裂韧性提高2倍、抗压强度提高1.4倍,与生物硬组织的性能相当。晶须和纤维为陶瓷基复合材料的一种有效增韧补强材料,用于补强医用复合材料的主要有:SiC、Si3N4、Al2O3、ZrO2、HA纤维或晶须以及C纤维等,SiC晶须增强生物活性玻璃陶瓷材料,复合材料的抗弯强度可达460MPa、断裂韧性达4.3MPam1/2,其韦布尔系数高。

  东南大学生物科学与医学工程学院(简称:东大生医学院)的前身是生物科学与医学工程系,该系由韦钰院士创建于1984年10月,系国内首创。2006年8月,为适应学科发展需要,经学校研究决定,成立生物科学与医学工程学院。学院的科学研究及学生培养方向瞄准21世纪主导学科——生命科学与电子信息科学,强调这两个学科的交叉与渗透,综合应用电子信息科学理论与方法解决生物医学领域中的科学问题,发展现代生命科学技术。

  主要研究方向:1、测序与生物信息分析;2、生物与医学纳米技术;3、生物医学材料与器件;4、医学影像与医学电子学;5、儿童发展与学习科学;6、医学信息学及工程。学院在生命科学领域中的研究与应用于国内遥遥领先。排名全国第一;2007年在国家重点学科考核评估中排名第一;2012年,在全国一级学科评估中,继续排名全国第一;连续多年蝉联首位。

  总共共拥有一个一级学科博士点、七个二级学科博士点,一个生物医学工程博士后流动站,该站于2005年被评为国家优秀博士后流动站;拥有生物电子学国家重点实验室、江苏省生物材料与器件重点实验室,同时还拥有苏州市生物医用材料与技术重点实验室、苏州市环境与生物安全重点实验室、无锡市生物芯片重点实验室等科研基地。拥有两个教学实验中心:医用电子技术实验中心(校级创新实验平台)、生物技术与材料实验中心。

  生物科学与医学工程学院已建成一支多学科交叉、以优秀中青年博士为主、拥有多名国家级专家的高水平学术梯队,现有专职教师60余人,其中院士1人,长江学者特聘教授3人,国家杰出青年基金获得者3人,教授20人,副教授20人,博士生导师18人,硕士生导师25人,85%以上的教师具有博士学位。2002年该梯队被评为江苏省“青蓝工程”省级优秀学科梯队。2002年,以陆祖宏教授为学术带头人的科学研究团队,得到国家自然科学基金创新研究群体的资助;2005年,该团队通过国家组织的评估,又得到了三年的滚动资助。自2005年至2010年,共承担科研项目212项,其中纵向课题175项,包括国家重点基础研究“973”项目(主持2项,子课题9项),国家高技术863课题22项(经费2968万元),杰出青年基金2项,国家自然科学基金创新研究群体1项(经费720万元),国家自然科学基金重点7项,自然科学基金面上项目60余项,部省级项目50余项,科研经费到款总额为1.3亿元。

  北京大学工学院生物医学工程系成立于2005年。作为新的工学院的组成部分,生医系从建系之初就致力于在工程科学的范畴内进行生命科学和医学的前沿研究,迅速地建立了研究生教育教学体系,并在生物医学工程研究方面取得了重要的进展。:⑴ 面向重大疾病的纳米医学; ⑵ 生物材料与再生医学;⑶ 生物力学和生物信息学; ⑷ 分子医学影像学;⑸微创医学; ⑹神经医学工程; ⑺ 移动/远程医学与健康信息学。建系以来,生医系已具有雄厚的科研实力,先后承担了国家重点基础研究发展计划(973)、国家高技术研究发展计划(863)、国家自然科学基金、国际合作项目等一大批科研项目,科研总量逐年增长。

  生医系已拥有一支朝气蓬勃的中青年科研队伍,其中教授4人,副教授4人,特聘研究员6人,全部具有海外留学经历。他们活跃在生物医学工程科研与教学的第一线,紧密跟踪国际学术前沿,开展生物医学工程高端领域的科研工作。

  注重与国际前沿研究和发展密切结合,开展生物医学工程相关的人才培养和科学研究。已经建设了若干研究室和实验室,正在开展生物功能分子与系统工程、生物界面和功能材料、生物医学建模与仿真、细胞力学与微纳米技术、生物信息学、医学信号和图像技术等方面的研究。

  联合博士点项目:北京大学—佐治亚理工学院—埃默里大学“生物医学工程”博士生联合培养。

  聘请了空军航空医学研究所俞梦孙院士、北京航空航天大学生物与医学工程学院樊瑜波院长、美国佐治亚理工学院朱承教授、中科院自动化研究所田捷研究员为北京大学工学院兼职教授。

  生物医学工程系主任为长江学者特聘教授,国家杰出青年基金获得者,国家科技部重点基础研究计划“973”项目“视觉修复基础理论与关键科学问题”首席科学家任秋实教授。

  生物医学工程学系,其前身可追溯到1977年在国内率先设立的生物医学工程与仪器专业,以后相继建成了中国生物医学工程学科的第一个硕士学位授予点、第一个博士学位授予点、第一个博士后科研流动站。该系所依托的生物医学工程一级学科是21世纪生命科学的重要支柱以及引领当今国际未来的前沿学科,旨在利用现代工程技术手段解决生物医学上的检测、诊断、治疗、管理等问题以及深入探索生命系统的各种运动机理及其规律性。作为国家“211工程”和“985振兴计划”重点建设学科,浙江大学生物医学工程学科在新一轮的教育部生物医学工程一级学科整体水平评估中学术声誉位列全国首位,与此同时,该学科自2002年成为国家重点学科后,2007年又再次被确认为国家重点学科。新近隶属该系的生物医学工程专业被列入浙江大学首批特色专业建设项目。

  该系建有《生物传感技术国家专业实验室》、《生物医学工程教育部重点实验室》、《浙江省心脑血管、神经系统药物筛选和中药开发及评价重点实验室》、卫生部、教育部共同批准设立的《浙江大学生物医学工程技术评估中心》等研究机构和实验室。现有专职教师30余人,其中教授11人,副教授15人,同时聘请了美国哈佛大学N.Y.S. Kiang、加州大学W.J. Freeman等一批国际著名学者任讲座教授、名誉教授和客座教授。经过整整三十年的持续发展,已逐步形成了包含本科、硕士、博士、博士后多层次的人才培养体系,练就了一支以中青年教师为主,具有医学、工学、理学等多学科交叉、基础扎实的教学和科研队伍,形成并发展了生物医学信息、生物传感技术及医学仪器、定量与系统生理方法学研究等三大研究方向。